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Abstract Goal models represent requirements and inten-
tions of a software system. They play an important role in the
development life cycle of software product lines (SPLs). In
the domain engineering phase, goal models guide the devel-
opment of variability in SPLs by providing the rationale for
the variability, while they are used for the configuration of
SPLs in the application engineering phase. However, vari-
ability in SPLs, which is represented by feature models,
usually has design and implementation-induced constraints.
When those constraints are not aligned with variability in
goal models, the configuration with goal models becomes
error prone. To remedy this problem, we propose a descrip-
tion logic (DL)-based approach to represent both models and
their relations in a common DL knowledge base. Moreover,
we apply reasoning to detect inconsistencies in the variabil-
ity of goal and feature models. A formal proof is provided to
demonstrate the correctness of the reasoning approach. An
empirical evaluation shows computational tractability of the
inconsistency detection.
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1 Introduction

One of the most prominent paradigms for reuse in software
engineering is software product lines engineering (SPLE).
An SPL (also known as a product family) is a set of soft-
ware systems that share most of their features. SPLE con-
sists of the domain engineering and application engineer-
ing life cycles [1]. In the domain engineering life cycle, an
SPL is developed as a whole. Variability and commonal-
ity among SPL members are represented by feature mod-
els. In the application engineering life cycle, a final appli-
cation can be derived through the feature model configu-
ration, i.e., the process of selecting and removing features
from the feature model based on stakeholders’ requirements
[2].

Features represent both technical elements (internal fea-
tures) and non-technical elements (external features) of a
software system [3]. That is, not only does a feature model
encompass the visible characteristics of product lines, but it
also includesmanydesign and implementation features along
with the variability relations between those features. More-
over, there are complex mapping relations between features
and stakeholders’ objectives, such that a goal can be realized
by several features and a feature can be used for the real-
ization of several goals. Considering the technical aspects
of feature models, the large size of feature models, and the
complex mapping relations between features and stakehold-
ers intentions, it is not easy for a stakeholder to understand
the functional and non-functional aspects of features and to
select features based on their objectives. Additionally, the
features in the feature model are of different interest for
stakeholders involved in the project [4,5]. For instance, final
stakeholders are interested to the user visible features while
designer and programmer require to see detail and technical
features.
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These challenges urge techniques which can handle the
complexity of feature models and facilitate the selection
of features during the configuration process. Clarke and
Proenca [4] andAcher et al. [5] emphasized the importance of
modularity in managing complexity by using views to show
a feature model up to certain levels of detail to stakeholders.
To this end, we aim at providing a more stakeholder-oriented
view of feature models where goal-oriented requirements
engineering (GORE) [6] is employed to generate a stake-
holder view of feature models.

GORE makes extensive use of goal models, i.e., models
capturing user intentions for a system-to-be, and facilitates
the exploration of design alternatives, described in high-level
non-technical terms. Typically, goal models are also used by
the SPLE community in both life cycles of SPLE. In domain
engineering, they are applied for a top down development
of SPLs [7–9]. In application engineering, they ensure the
selection of features that are based on the objectives of a
target application stakeholder [10].

In essence, goal models and feature models provide dif-
ferent variability perspectives. Goal models represent inten-
tional variability, which is different in objectives of stake-
holders and the way stakeholders may use a system-to-be to
reach their objectives [7]. On the other hand, feature models
are commonly used to illustrate variability between various
systems, which is called product line variability [11]. When
applying goal models in the context of SPLE, we need to
capture and represent the stakeholders’ objectives of several
products. Hence, not only should the goal models be able to
represent the objectives of the stakeholders of various prod-
ucts, but they also should be able to distinguish between
objectives of different products. In other words, the goal
model should illustrate product line variability in the inten-
tional space, which refers to differences in intentional spaces
of product line members. Standard goal model languages
such as i* and GRL can represent intentional variability, but
lackmechanisms for representing differences between inten-
tional spaces of various systems (i.e., product line variability
in the intentional space). Hence, we introduced the notion
of family goal model by extending standard goal modeling
techniques (see Sect. 3.1).

The family goal model and the feature model are con-
nected by mappings, which provide bidirectional relation-
ships and traceability links between high-level business
objectives of stakeholders, described by goal models and
implementation units encapsulated within features in fea-
ture models. In this paper, we refer to the combination of
the family goal model, the feature model, and the mapping
model as a family requirements model. Due to the differ-
ent perspectives of family goal models and feature models,
the variability semantics might be different in both models.
Also, these models might be developed by different stake-
holders. Moreover, due to technical constraints, relations in

feature models may be changed by software designers dur-
ing the development of a product line. All these factors may
lead to inconsistency between family goal model relations
and feature model relations, which limit the product config-
uration within the application engineering life cycle since
several feature selections could lead to non-satisfaction of
stakeholders’ intentions.

To remedy these problems, we present a validation
approach that can detect inconsistencies in variability
between goal and feature models already in the domain engi-
neering life cycle, i.e., based on mappings between goals
and features, independent of a particular feature selection.
We establish a family requirements model, and we provide
an approach for the validation of the family requirements
model. The approach does not only ensure the alignment of
feature selections to user intentions but also prevent the high
cost of changing design and implementation models in last
phases of domain engineering to align them with variability
in intentions of stakeholders.

In particular, this paper makes the following contribu-
tions: (1) a goal model profile extension (i.e., family goal
model) to represent intentions of product lines and the differ-
ence of intentions for various products; (2) a representation
and formal definition of family goal models, feature models,
and their mappings in description logic (DL); (3) a logic-
based reasoning through standard reasoning mechanisms
for the discovering of inconsistencies in a family require-
ments model; (4) support for maintainability and traceability
between goal and feature models; (5) formal and empirical
evaluation of the proposed approach.

The paper is structured as follows: Sect. 2 introduces the
goal and feature model notations and provides formal defi-
nitions for these models. Section 3 explains the role of goal
models in the software product line domain and introduces
the notion of family goal models. The family requirements
model and a set of inconsistency patterns, which may happen
in the family requirements model, are explained in Sect. 4.
After providing a representation of the family requirements
model in description logic in Sect. 5, the validation procedure
for identifying inconsistencies in family requirements model
is explained in Sect. 6. After describing the evaluation of the
inconsistency checking algorithms in Sect. 7 and discussing
related work in Sect. 8, concluding remarks and directions
of the future work are highlighted in Sect. 9.

2 Foundations

Goal and feature models constitute the cornerstones in goal-
oriented SPLE. This section introduces bothmodel types and
clarifies their concepts using a running example from the
online shopping domain [12].
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2.1 Goal models

Amongexistinggoalmodel representations such as i*/Tropos
[13,14], NFR [15], KAOS [16], andGoal Requirements Lan-
guage (GRL) [17], we adopt GRL, a part of theUser Require-
mentsNotation (URN) [17], due to itswide adoption in indus-
try and research and being an international standard. Simi-
lar to related work [18,19], in our framework, a goal model
consists of decompositions and contribution links.1

Intentional elements (or intentions) used in this paper are
(hard) goals, soft goals, and tasks.Goals represent conditions
or states of affairs that a stakeholder might like to achieve.
Soft goals are similar to hard goals, but without a clear-cut
criteria for whether the condition is achieved, and it is up to
subjective judgment. Typically, they model non-functional
requirements of the target system.2 Tasks specify conceptual
solutions in the target system.3

A goal can be decomposed into several subgoals, repre-
sented by decomposition relationships. GRL supports AND,
IOR, and XOR decompositions. The satisfaction of a target
intentional element in an AND-decomposition requires that
all source intentional elements need to be satisfied. IOR is
used to specify that satisfaction of at least one source satis-
fies the target intentional element. Finally,XOR specifies that
exactly one of the source elements is necessary to satisfy the
target.

GRL also supports contribution links that model the
impact of satisfaction of a source intentional element on the
satisfaction of a target intentional element. Among the con-
tributions, Make and Break are respectively positive and
negative, and sufficient for the satisfaction of a target inten-
tional element, while Help and Hurt are also respectively
positive and negative, but insufficient for the satisfaction of
a target element. The extent of the contribution of Some-
Positive and SomeNegative is unknown. Finally, for the
Unknown contribution, both the extent and degree (positive
or negative) are unknown.

A concrete goal model is depicted in Fig. 1, where inten-
tional elements and relations are represented. For instance,
the goal Payment Collected can be achieved either by
Receive Payment By Card, by Receive Payment By
Non-Card, or by Payment Postponed. Also, satisfaction

1 In this paper, we are interested in validation of intentions in family
goal models, typically achieved within one actor. Therefore, we do not
consider different actors and dependencies among them.
2 Some non-functional requirements, like security, can have a clear-
cut criteria and also can be achieved with different operationalizations.
The GRL standard does not specify how to model these situations.
Nevertheless, the standard allows the specification of decompositions
on soft goals.
3 Tasks are considered to be requirements if they are assigned to the
system-to-be and to be assumptions if they are assigned to the environ-
ment.

of Payment Postponed requires satisfaction of both inten-
tional elements Trustworthiness of the Customer Deter-
mined and Determine Payment Date. Satisfactions of
Courier Deliver and Deliver Item lead to satisfaction and
dissatisfaction of soft goalMinimize Delivery Cost, respec-
tively.

Definition 1 (Goal model) A goal model is a triple GM =
〈G, C,D〉. G is a set of goals (also called intentions or inten-
tional elements). Intentions are (hard) goals (Gg), tasks (Gt )
and soft goals (Gs). C and D describe intentional relations
on G, C denotes positive and negative contributions (G×
{ , , , , , , } ×G). D are decomposition relations of
intentional elements G× {IOR, XOR, AND} ×P(G).

2.2 Feature models

In SPLs, feature models represent variability between mem-
bers of a product line (i.e., product line variability) (cf. Def-
inition 2).

Definition 2 (Feature model) A feature model FM =
〈F ,FM ,FO ,FI OR,FXOR,Fincl ,Fexcl〉 is a tree structure
that consists of features F and feature relations in terms of
parent–child and integrity constraints.FM ⊆ F ×P(F) and
FO ⊆ F × P(F) are sets of parent and the set of all their
mandatory and optional child features, respectively. FI OR

and FXOR ⊆ F × P(F) are sets of pairs of child features
and their common parent feature. Fincl and Fexcl ⊆ F × F
are sets of includes and excludes relationships (integrity
constraints).

Figure 2 shows a part of the on-line shopping feature
model. Mandatory features have to be selected when their
parent is selected, e.g.,Order Management and its manda-
tory child features Pay Management,Order Preparation,
and Shipment. In contrast, the selection of a parent fea-
ture (e.g., Pay Management) does not require the selec-
tion of its optional child feature (e.g., Payment Postpone).
Group relationships are classified into OR (IOR) and alter-
native (XOR). An includes integrity constraint is used when a
selection of one feature requires the selection of another one,
e.g., in Fig. 2, the selection of E-Bill requires the selection
of Email, as depicted by the annotation in the upper part of
the figure. An exclude constraints imply that selection of a
feature excludes the selection of the other feature.

3 Goal models in the SPLE life cycle

Goal and feature models are used for different purposes. In
order to adopt goal models in the development life cycles
of software product lines, we continue with a foundational
analysis of the different modeling constructs in both types of
models.
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Fig. 1 Goal Model of the e-store case study—VP and circle notations will be introduced in Sect. 3.1

Fig. 2 Feature model of the online shopping case study

3.1 Family goal models and feature models

However, model elements and the variability among these
elements are differently captured in both models. To out-
line this in this section, we present distinctions between goal
models and feature models and compare variability types in
both models.

We refer to goal models when employed in product lines
as family goal models, which represent the intentional space
of a domain for which the product line is developed. Sev-
eral works proposed a set of transformation rules to produce

feature models from family goal models [13,20]. However,
such approaches do not take into account the details and dif-
ferences between these two models.

A family goal model is an artifact representing stake-
holders’ objectives and strategies. It describes the intentional
space of stakeholders of a domain.4 Feature models have a
different purpose. They describe the configuration space of

4 The stakeholders include final users, managers, designers, clients, etc.
However, in the rest of the paper, we only concentrate the final users
and representation of their intentions in goal models.
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a product line (i.e., a set of products). Accordingly, they rep-
resent characteristics of software products that belong to a
product line. Features that are assigned to goals can be seen
as the realization of requirements (solutions) in the software
products. One or more features may be developed for real-
izing one or more tasks in goal models. Different terms are
defined for goals: achieve, maintain, avoid, and cease, while
features can only be selected or deselected [8].

The relationships have also different meanings in both
models. Intentional relations in family goal models show
decompositions of stakeholders’ goals into subgoals and fur-
ther to low-level subgoals and tasks [21]. An intentional
decomposition (except for soft goals) in a goal model is
an entailment, i.e., an AND-decomposition of source inten-
tional elements is one possible combination (among others)
of source intentional elements that implies the target inten-
tional element. On the other hand, an AND-decomposition
in a feature model is a PartOf relation that implies a parent
feature contains its child features.

With respect to the variability in the context of software
product lines, we also distinguish between product line vari-
ability and behavioral variability [11]. Product line variabil-
ity refers to differences between products in a product line,
which may exist among their requirements, design models
and implementation models [22]. On the other hand, behav-
ioral variability represents the various behavior that a single
system may be used by its user [23]. For example, work-
flow patterns in process modeling languages such as BPMN,
BPEL, and activity diagrams provide mechanisms for repre-
senting variability in behavior of a single system.

In family goal models, OR and XOR relations rep-
resent variability in stakeholders’ goals (i.e., intentional
variability), and the ways that stakeholders’ goals can be
achieved (i.e., behavioral variability). When developing a
reference design and implementation models from the fam-
ily goal model, these variability relations can lead to either
intentional/behavioral variability or product line variabil-
ity in the reference models. In the family goal model, OR-
decompositions (and similarly XOR-decompositions) repre-
sent intentional/behavioral variability, if all products hav-
ing a target intentional element involved in the OR relation
(XOR relations), contain all source intentional elements of
the OR-decomposition (XOR-decomposition) in their goal
models. For example, as shown the Fig. 1, a final user in
an on-line shop may variably choose to perform Check if
Return Customer or Check Credit tasks in order to satisfy
the hard goal Trustworthiness of the Customer Deter-
mined, even though both tasks are invariably available for
them in all products.

On the other hand, in the family goal model, OR-
decompositions (and similarly XOR-decompositions) rep-
resent product line variability if source intentional elements
involved inOR-decompositions (XOR-decompositions) vary

between different products that contain the target inten-
tional element. For example, in Fig. 1, some products pro-
vide Receive Payment by Card or Payment Postponed
to achieve Payment Collected, while other products offer
Payment Postponed and Receive Payment By Non-
Card to achieve Payment Collected goal.

Feature models aim at modeling differences between
products of a product line [3,24,25]. Therefore, feature mod-
els only represent product line variability, and variability
related to a single system is represented in feature models
as commonalities. For example, since XOR relation between
Check if Return Customer andCheck Credit in the family
goal model is a behavioral variability, the features mapped
to those tasks are considered as mandatory features. On the
other hand, since theOR intentional relation betweenDeliver
Item and Courier Deliver is a product line variability, there
is a variability relation between their corresponding features
(see Fig. 5). The variability relations in feature models are
resolved when a product is derived from a product line, i.e.,
when a new configuration is created.

We should note that a family goal model represents stake-
holder’s requirements and their variability.On the other hand,
feature models not only show variabilities in requirements
but also encapsulate product line variabilities in designing
and implementation models [26]. Therefore, a feature model
may contain several variability relations that do not exist
in the goal model. For example, there is alternative relation
between Autorize. Net, Cyber Source, and Link Point fea-
tures for implementing Payment Gateway feature, which
shows variability in the level of a product line implementa-
tion. However, this variability relation does not exist in the
family goal model, because Receive Payment By Card
task is not concerned with different ways of implementation.

Having investigated the notion of variability in the fam-
ily goal models and feature models, we found out that the
semantics of variability in these two models are different.
Variability relations in goal models can be either product line
variability or intentional/behavioral variability while feature
models only represent the product line variability.

The existing goal model notations do not discriminate
between product line variability and intentional/behavioral
variability. Thus, we extend the standard goal model nota-
tion, introduced in Sect. 2.1, in order to distinguish the types
of variability in the family goal model.

For OR-decompositions (XOR-decompositions), the
product line variability and intentional/behavioral variability
are distinguished using theVP notation.OR-decompositions,
showing product line variability, are labeled asVP. For exam-
ple, the VP annotation on the Item Delivered goal in Fig. 1
shows that different products having the goal Item Deliv-
ered vary in ways they provide fulfillment of this goal for
their final users (i.e., Delivered By Courier or Delivered
By Company). Therefore, during the development time, at
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least one of the source intentional elements might be selected
for the target product in goal model.

In standardgoalmodeling [13,16,17],AND-decomposing
a target intentional element (goals or tasks) into source inten-
tional elements implies that the satisfaction of the target
intentional element is dependent on the satisfaction of all
of its sources. However, in family goal models, there may be
some source of intentional elements inAND-decompositions
whose fulfillment is necessary for the target intentional
element of a particular product, but their non-fulfillment
does not make the target intentional element unsatisfiable in
other products. To enable family goal models to present and
describe these situations, we add the notion of optional goals,
resembling optional features in feature model. Hence, inten-
tional elements in an AND-decomposition can be optional if
their non-fulfillment does not lead to non-fulfillment of the
target intentional element. For example, Fig. 1 shows that
non-fulfillment of task Apply Discount does not necessarily
lead to the non-satisfaction of the goal Payment Managed.

In family goal models, we use soft goal as means for
resolving product line variability in the intentional space.
Therefore, contribution links can propagate the desired sat-
isfaction level of soft goals into goals and tasks and help in
the selection of a proper variant of product lines-based inten-
tional variability. For example, the Minimize cost delivery
soft goal can be used as criteria to resolve product line vari-
ability in the ItemDelivered goal.We formally define family
goal models as follows:

Definition 3 (Family goal model) A family goal model
FGM = 〈G, C,DF 〉 extends a goal model GM = 〈G, C,D〉
as follows: The decomposition relation D is extended by
decompositions that cover product line variabilityDF ⊆ G×
{IOR, XOR, AND, AND-O, IOR-VP, XOR-VP } ×P(G).

3.2 Development life cycles

In our approach, we use goal models in both life cycles of
SPLE. Figure 3 shows a family goal model and a feature
model in combination with mappings between them in the
domain engineering life cycle, as well as the application goal
model and configuration in the application engineering life
cycle.

In the domain engineering life cycle (see Fig. 3a), one of
the most important issues are the elicitation, representation
and management of different stakeholders’ functional and
non-functional requirements. This is reflected by the goal
model. Hence, in domain requirements engineering phase,
first the family goal model is created by domain engineers.
High-level goals (e.g., Order Processed) and soft goals
(e.g.,Minimize Risk) of the stakeholders are discovered, and
then, the high-level goals are decomposed into lower-level
goals and finally tasks. Goal decomposition is done by fol-

(a)

(b)

Fig. 3 Contribution to the SPLE life cycle. a Domain engineering.
b Application engineering

lowing the framework proposed by Liaskos et al. [27] where
intentional variability concerns are recognized for each goal.
Then, the goals are refined according to the variability con-
cerns. After refining goals, requirements engineers analyze
the impacts of each subgoal on the soft goals and model the
impacts using contribution links. After developing the fam-
ily goal model, using the proposed extensions (i.e., VP and
optional), the family goal model is analyzed with respect to
product line variability, and the goals are annotated with the
proper annotations.

The feature model describes elements of a system, their
functionality and how different elements depend on each
other. Finally, relationships between stakeholders’ goals and
SPL features, which realize these goals, are represented by
mappings between goals and features, describing a realiza-
tion of goals by system features (cf. [10]).

The featuremodel is generated from the family goalmodel
by converting product line variability into variability rela-
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tions in the feature model. In the family goal model, goals
are finally refined to tasks, which show the requirements
for designing a product line. These tasks are the sources
for designing features in the feature model. Hence, features
are developed based on the tasks in the family goal model
and mapped to the corresponding tasks. Mappings repre-
sent the realization of intentional elements by features. One
feature can operationalize several intentional elements, and
one intentional element can be realized by several features.
We propose a mapping model, which is based on template-
based approach proposed by Czarnecki and Antkiewicz [28].
Although mapping between features and tasks may require
domain engineers effort, this mapping needs to be created
only once. Our approach only requires that atomic tasks in
the family goal are mapped to the features, which provide
realization for those features. Also, mapping features in the
feature model to development artifacts is a common prac-
tice in the software product line engineering [29], which is
required for further reusability in application engineering life
cycle. After designing features for realizing tasks in the fam-
ily goal model, the feature model is generated by developing
variability relations between features based on the variability
relations in the family goal model.

In the application engineering life cycle (see Fig. 3b),
application engineer communicates and understands the
stakeholders’ needs and requirements by identifying their
objectives. The family goal model is used as a reference
model for communicating with the customers and capturing
their goals. Afterward, a particular application goal model
is obtained based on an individual stakeholder’s goals and
business objectives and by executing the backward reason-
ing algorithm [14]. Accordingly, based on the mappings
between goals and features, a preconfiguration process is exe-
cuted and features which are not based on the current stake-
holders’ objectives are filtered out from the feature model,
by preserving the feature model constraints. The details of
the preconfiguration process are out of scope of this paper.
The detailed process of preconfiguration is outside of the
scope of this paper. Interested readers can find more details
about the preconfiguration process in our previous work
[10].

4 Goal-oriented requirements engineering for SPLs

The comparison of goal and feature models and their vari-
ability resulted in an extension of goal models, the so-called
family goal models, which present different notions of vari-
ability. In the following, we specify the realization of goals
from a family goal model by features of a feature model in
terms of mappings. Based on these mappings, we specify
realization inconsistencies that might happen due to contra-
dicting relationships of goals and their mapped features.

4.1 Relating intentional elements to features

In the domain engineering life cycle, goal models capture
intentional variability [7,27] and describe the intentions
behind existing features in the software product line. Hence,
using the goal model, we can ensure that existing features
and variability relations in feature models are aligned with
intentional variability in the goal models. We can also trace
back differences in products to differences in the intentions
of the stakeholders.

In our model, for representing an explicit mapping (i.e., a
mapping indicated by domain engineers), a mapping relation
for eachmapped task is developed. For example, theReceive
Payment By Card task is mapped to the Debit Card Pay-
ment, Credit Card Payment and Payment Gateway fea-
tures; hence, a mapping relation ΦRPBC (Receive Payment
By Card, {Debit Card Payment, Credit Card Payment, Pay-
ment Gateway}) is created. If a feature is mapped to more
than one goal or/and task, then the corresponding feature
appears in the mapping relations of all those goals or/and
tasks. After explicit mapping between tasks in a family goal
model and features in a feature model, we can drive implicit
mappings between intermediate tasks and goals and features
through existing relations in goal models and feature models.
For example, we can infer that the goal Payment Managed
in the family goal model is implicitly mapped to the feature
Payment Management (see Fig. 1).

Definition 4 specifies mappings between a family goal
model and a feature model, as well as the resulting family
requirementsmodel, which is the combination of bothmodels
including the mappings between them.

Definition 4 (Mapping and family requirements model) Let
FGM = 〈G, C,DF 〉 be a family goal model where G =
(Gg ∪ Gt ∪ Gs) and FM = 〈F ,FM ,FO ,FI OR,FXOR ,
Fincl ,Fexcl〉 a feature model, Φi (Gi ,Fi ) is a mapping rela-
tion between a intentional element Gi ∈ (Gg ∪ Gt ) and
a set of features Fi ⊂ F , and Φ denotes the set of all
mappings between FGM and FM. A family requirements
model Π is defined as a triple of FGM, FM and Φ : Π =
〈 FGM, FM, Φ〉.

4.2 Realization inconsistency

In a family requirements model Π = 〈 FGM, FM, Φ〉,
mappings Φ describe the realization of goals by features,
while goals depend on intentional relations IR and features
depend on feature relations FR. Relations in a family goal
model capture the relations amongobjectives of stakeholders,
while feature relations originate from intentional relations in
the family goal model. This means that variability and com-
monality in featuremodels should be alignedwith intentional
relations defined in family goalmodels. Therefore, there is an
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inconsistency in a family requirements model if intentional
relations do not coincide with the feature relations. Hence,
we aim at developing a logical-based technique that detects
whether the intentional/behavioral relationships in a family
goal model are correctly implemented with the commonality
and variability relationships in feature models.

An inconsistency can only happen if source and target
elements of both relations (i.e., IR and FR) are mapped to
each other. We make the following assumptions: (1) only
hard goals and tasks are mapped to features, since soft goals
usually describe non-functional requirements; (2) thesemap-
pings are collaboratively developed by domain experts and

domain engineers; (3) only contributions Make ( ) and
Break ( ) are considered in the inconsistency detection of a
family requirementsmodel since only these contributions are
sufficient for goal fulfillment (cf. Sect. 2.1); (4) unmapped
elements (i.e., elements which are not mapped explicitly or
their implicit mapping cannot be derived from existing rela-
tions in the family goal model and the feature model) do not
contribute to inconsistencies; and (5) a mapping of a fea-
ture means implicitly also a mapping of the parent feature to
the parent goal of the mapped goal (cf. mapping principles
in [10]).

Assume FR is a feature relation, with target feature F and
source features F1, . . . , Fn , i.e., F depends on F1, . . . , Fn .
Likewise, IR is an intentional relation with target element
G ∈ G and source intentional elements G1, . . . ,Gm ∈
G. The fulfillment of G depends on the fulfillment of
G1, . . . ,Gm . We distinguish between potential and strong
inconsistency.

Definition 5 (Potential inconsistency) A permissible satis-
faction of the intentional element G, which depends on the
satisfaction of G1, . . . ,Gm , might lead to an incorrect con-
figuration of feature F , while F depends on F1, . . . , Fn .

Definition 6 (Strong inconsistency) All permissible satis-
factions of G, which depend on the satisfaction of G1, . . . ,

Gm with respect to IR, lead to an incorrect configuration of
feature F (F depends on F1, . . . , Fn).

Figure 2 depicts an example of a strong inconsistency
between a feature relation and an intentional relation.
The feature Oder Preparation has three mandatory chil-
dren (Approve Order, Item preparation and Order Con-
firmation). The corresponding goal Order Verified and
Approved (OVA) has exclusive subgoals, which are mapped
to the children of Order Preparation. Thus, no goal fulfill-
ment of OVA will lead to a valid feature configuration.

Another example illustrates a potential inconsistency. Fea-
ture Buy Item is mapped to task Acquire From Supplier
(AFS), feature Build Item is mapped to task Build and
Package Item (BPI), and finally, feature Transfer from
Warehouse is mapped to the task Obtain from Stock
(OFS). By mapping goals to features, the implicit map-
ping between parent goals (e.g., Item Available) and par-
ent features (e.g., Item Preparation) is established. Let us
assume that an application engineer wants goal Item Avail-
able be satisfied in a target product. This can be achieved
by selecting Build and Package Item (BPI) to be ful-
filled, but not Acquire From Supplier (AFS) and Obtain
fromStock (OFS). However, featuresTransfer fromWare-
house and Obtain from Stock are mandatory features,
and removing them from the feature model violates the
feature model relations. Thus, this can lead to a potential
inconsistency.

Table 1 shows combinations of intentional relations (IR)
and feature relations (FR). The comparison between contri-
butions ( and ) to feature groups means that the goals are
mapped to the siblings of the feature group.

Among intentional relations, the relations IOR-VP, XOR-
VP and AND-Optional depict product line variability (dif-
ference in intentional elements of different products) and the
other intentional relations illustrate intentional/behavioral
variability (variability in the intentional elements of the stake-
holders of a product) in the intentional space. Accordingly,

Table 1 Correspondence between intentional relations and feature relations

Features relations Intentional relations

AND Optional IOR IOR-VP XOR XOR-VP

Parent-mandatory child � ± � ± � � � �

Parent-optional child � � � � � � � �
OR feature group � � � � � � � ±
Alternative feature group � � � � � � � �
Include relation � ± � ± � � � �

Exclude relation � � � � � � � �

Legend no inconsistency (�), strong (�) and potential (±) inconsistency. and are sufficient contribution links. IOR and XOR show intentional
variability, which is converted to behavioral variability and should remain for run-time. IOR-VP and XOR-VP show intentional variability, which
is transformed to product line variability and should be resolved during the configuration of products
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the former relations should be aligned with variability rela-
tion in feature models (i.e., Optional, Alternative and OR),
and the latter should be aligned with commonality (i.e.,
Mandatory relation) in the feature model.

5 Knowledge base of the family requirements model

In order to recognize inconsistencies in family requirements
models, we need a formal representation formalism that cap-
tures intentional relations, feature relations and mappings
between goals and features. Furthermore, we need automatic
means to automatically compare these relationships and pin-
point the source of an inconsistency. Following this line of
argumentation, we propose a formal knowledge representa-
tion that offers reasoning (or inference) services to facili-
tate model validation. We use description logic (DL) as it
is expressive enough to represent all kind of elements (i.e.,
goals and features) and relationships and mappings between
them. Besides this, DL offers quite efficient, sound and
complete reasoning services.

DL modeling has been used to align between different
models and to use reasoning for model verification. For
instance, in [30], we proposed an approach for inconsistency
detection in design artifact of services (represented in busi-
ness process model) with respect to requirements that are
represented in goal models. In this work, our DL model has
to cover three different kinds of variability that are given by
the family goal model and by the feature model.

5.1 Foundations of description logic

Description logic (DL) [31] is a decidable fragment of first-
order logic (FOL).5 A DL knowledge base consists of termi-
nological axioms (TBox) and assertions (ABox). The TBox
specifies concepts, denoting sets of individuals and roles
defining binary relations between individuals. The main syn-
tactic constructs are depicted in Table 2, supplemented by the
corresponding FOL expressions.

The universal concept � is the superconcept of all con-
cepts, i.e., C 	 � holds for each concept C , and ⊥ is an
unsatisfiable concept. Concept inclusion axioms C 	 D
mean that each individual of concept C is also an individ-
ual of D. A concept equivalence (or definition) C ≡ D is an
abbreviation for two concept inclusion axioms C 	 D and
D 	 C . A concept union is a complex concept expression

5 In this paper, description logic (DL) is used to formalize the con-
straints of interests inmodels of interests and enable validation services.
We could have used some other formalism, but we opted for DL as it
is precise and expressive enough to serve our purpose—formalize con-
straints that need to hold between our models of interest. Comparison
of different reasoning formalisms for the particular task under study is
beyond the scope the paper and deserves a new paper on its own.

Table 2 Constructs and notations in DL and FOL syntax

Construct name DL syntax FOL syntax

Atomic concept, atomic role C, R C(x), R(x, y)

Concept inclusion axiom C 	 D ∀x .C(x) → D(x)

Concept union C1 � · · · � Cn C1(x) ∨ · · · ∨ Cn(x)

Concept intersection C1 � · · · � Cn C1(x) ∧ · · · ∧ Cn(x)

Concept negation ¬C ¬C(x)

Existential quantification ∃P.C ∃y.(P(x, y) ∧ C(y))

and refers to a disjunction in FOL. Likewise, a concept inter-
section refers to a conjunction in FOL. A concept negation
¬C is the set of all individuals that are not individuals of the
concept C .

Due to the well-defined model-theoretic semantics of DL,
there are sound reasoning algorithms that offer practically
efficient reasoning services. In the remainder, we use sub-
sumption checking as one of the basic reasoning services.
Subsumption checking refers to the question whether a con-
ceptC is subsumed by D, i.e.,C 	 D holds in the knowledge
base, whereby C and D can be complex concepts.

5.2 Representation of models and mappings

The key part of our modeling formalism is to represent the
different relations of both models, combined with mappings
between features and goals.

5.2.1 Intentional relations

A family goalmodel FGM = 〈G, C,DF 〉 contains the inten-
tional relations (IR) on goals G ∈ G. The corresponding DL
knowledge base ΣFGM is built according to Algorithm 1.
For each goal G, we represent its relations by the concept
RelG . Relationships between goals are expressed in DL by
the role require.

Lines 4–6 capture an IOR-decomposition, in which a goal
G is satisfied only if at least one of its subgoalsGi is satisfied.
This is represented in DL by a concept union over Gi . We
use the role relates to express relationships between goals.
The representation of exclusive decompositions is straight-
forward (lines 7–9).6 Conjunctive decompositions, as well as
OR decompositions, which represent behavioral variability,
are described by concept intersections (lines 10–12), optional
goals are neglected, as the fulfillment of an optional goal

6 Please note that ⊗ is not a standard operator in DL. For a more
concise representation, we use

⊗
G′∈{G1,...,Gn } ∃requires.G ′ as an

abbreviation for
⊔

G′∈{G1,...,Gn } ∃requires.G ′ �¬(
⊔

G′′,G′′′∈{G1,...,Gn }
(∃requires.G ′′ � ∃requires.G ′′′)).
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Algorithm 1 Representation of the Intentional Relations
ΣFGM

1: Input: Family Goal Model FGM = 〈G, C,DF 〉
2: Output: Knowledge base ΣFGM
3: for all (G, γ, {G1, . . . ,Gn}) ∈ D do
4: if γ = I OR − V P then
5: RelG := RelG � (

⊔
i=1,...,n ∃requires.Gi )

6: end if
7: if γ = XOR − V P then
8: RelG := RelG � (

⊗
G′∈{G1,...,Gn } ∃requires.G ′)

9: end if
10: if γ ∈ {AND, I OR, XOR} then
11: RelG := RelG � (

�
(i=1,...,n)∧(¬(G◦Gi ))

∃requires.Gi )

12: end if
13: end for
14: for all (G ′, ,G) ∈ C do
15: RelG := RelG � ∃requires.G ′
16: end for
17: for all (G ′, ,G) ∈ C do
18: RelG := RelG � ¬∃requires.G ′
19: end for

depend on an individual requirement selection and cannot be
determined in the domain engineering life cycle.

Sufficient positive contributions (lines 14–16) specify that
the fulfillment of G requires the fulfillment of G ′. Thus, we
add the expression ∃requires.G ′ to the definition of con-
cept RelG . Sufficient negative contributions (lines 17–19)
use concept negation in order to represent the exclusiveness
of goals G and G ′.

Axioms 1 and 2 exemplify the DL representation for an
excerpt of the goal model of Fig. 1. An AND-decomposition
of the goal OP (Order Processed) into subgoals OVA
(Order Verified andApproved),PM (PaymentManaged)
and ID (Item Delivered) is described in Axiom 1. An IOR-
VP-decomposition of the goal ID (Item Delivered) is given
in Axiom 2.

RelOP ≡ ∃ requires.OV A � ∃ requires.PM

�∃requires.I D (1)

RelI D ≡ ∃ requires.CD � ∃ requires.DI (2)

5.2.2 Feature model relations

Similar to goal models, the feature model relations FR of a
feature model FM are represented in a DL knowledge base
ΣFM (Algorithm 2). The DL representation is based on the
general modeling principles of Wang et al. [32]. However,
due to the different validation purpose, we adapt some mod-
eling principles according to our particular need.We use only
one role requires to describe the relations of a feature that
requires other features, while Wang et al. use different roles.
It is easier andmore intuitive to compare concept expressions
that use the same role. We use concept definitions (equiva-

Algorithm 2 Representation of the Feature Model Knowl-
edge Base ΣFM

1: Input: Feature Model 〈F,FM ,FO ,FI OR,FXOR,Fincl ,Fexcl 〉
2: Output: Knowledge base ΣFM
3: for all F ∈ F do
4: RelF ≡ �
5: end for
6: for all (F, {F1, . . . , Fn}) ∈ FM do
7: RelF := RelF � �

i=1,...,n ∃requires.Fi
8: end for
9: for all (F, I OR, {F1, . . . , Fn}) ∈ FI OR do
10: RelF := RelF � ⊔

i=1,...,n ∃requires.Fi
11: end for
12: for all (F, XOR, {F1, . . . , Fn}) ∈ FXOR do
13: RelF := RelF � (

⊗
F ′∈{F1,...,Fn } ∃requires.F ′)

14: end for
15: for all (F, F ′) ∈ Fincl do
16: RelF := RelF � ∃requires.F ′
17: end for
18: for all (F, F ′) ∈ Fexcl do
19: RelF := RelF � ¬∃requires.F ′
20: end for

lence axioms) in order to allow for a subsumption checking
between the different concepts that represent intentional and
feature relations (cf. Sect. 6).

Initially, for each feature F, RelF is equal to the univer-
sal concept (line 4 in Algorithm 2), to capture the case that
a feature does not depend on any other feature. All manda-
tory child features of a feature F are represented by a concept
intersection (lines 6–8). An inclusive OR-decomposition of a
feature F into features F1, . . . , Fn is represented by a concept
union over the mapping concepts of each feature Fi (lines 9–
11). Likewise, XOR-decomposition is described by concept
unions, but with a further restriction that the selection of only
one feature is allowed (line 12–14). The includes integrity
constraint specifies that the selection of a feature F also
requires the selection of a feature F ′. In DL, we define RelF
dependent of the feature F ′ (lines 15–17). The excludes
integrity constraint is defined similarly (lines 18–20).

Axiom 3 defines featuresOrder Preparation, Pay Man-
agement and Shipment as mandatory children of Order
Management. An exclusive grouping of the features
Coupon andPercentage Discount is depicted byAxiom 4.
The second part of the axiom excludes the selection of multi-
ple child features. Axiom 4 describes an integrity constraint,
i.e., feature E-bill includes feature E-mail.

RelOrderManagement ≡ ∃ requires.Order Preparation

� ∃ requires.PayManagement

� ∃ requires.Shipment (3)

RelHandelDiscount ≡ ∃ requires.Coupon

⊗ ∃ requires.PercentageDiscount

RelE−bill ≡ ∃ requires.E − mail (4)
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5.2.3 Mapping representation

Besides intentional relations IR and feature relations FR, we
have to represent the realization of goals by the correspond-
ing features in terms of mappings in the knowledge base
ΣΦ . A mapping is described as a concept equivalence in the
knowledge base. If there is a mapping φi (Gi ,Fi ) (φi ∈ Φ)
from a goalGi to the set of featuresFi , we represent themap-
ping by an axiom G ≡ P(Fi ) where P shows propositional
formula over features in Fi . Axiom 5 shows the mapping
relation between the task Receive Payment By Card and
the features Debit Card Payment, Credit Card Payment
and Payment Gateway.

RelReceivePayment ByCard

≡ (RelDebitCard Payment � RelCreditCard Payment )

� RelPaymentGateway (5)

6 Verification of family requirements models

The verification aims at detecting inconsistencies between
intentional relations in the family goal model and variabil-
ity/commonality relations in the feature model. Hence, the
verification compares the intentional and feature relations
of mapped elements. For each mapping, we check whether
there is a strong or potential inconsistency, or even no incon-
sistency, according to the correspondences of Table 1.

6.1 Verification procedure

The knowledge base contains DL concepts RelG and RelF
that describe intentional relations IR of G and feature rela-
tions FR of F . From a logical point of view, concepts RelG
and RelF represent formulas, and we compare them in order
to analyze the influence of RelG on RelF . (1) A potential
inconsistency is identified if the satisfaction of IR does not
necessarily imply the satisfaction ofFR (expressed by RelF ).
Thus, the concept RelG is not subsumed by RelF , i.e., RelG
does not imply RelF . (2) A strong inconsistency is recog-
nized by contradicting relations of goal G and feature F .
Thus, the intersection of RelG and RelF is unsatisfiable, i.e.,
the intersection is subsumed by the empty concept ⊥ in DL.

Accordingly, we check either whether RelG � RelF 	 ⊥
(strong inconsistency) or whether the implication RelG ⇒
RelF holds, i.e., ¬RelG ∨ RelF is a tautology (no poten-
tial inconsistency). In DL, this is represented by a con-
cept union: ¬RelG � RelF . For this purpose, we extend the
knowledge base by verification concepts ValidG∧F (strong
inconsistency) and ValidG⇒F (potential inconsistency) for
each mapped elements (G, F) (φ(G,F) with F ∈ F) (cf.
Definition 7).

Definition 7 (Knowledge base Σ for the Verification) The
knowledge base Σ := ΣFM ∪ ΣFGM ∪ ΣΦ is extended as
follows: For each mapped elements (G, F) with (φ(G,F)

F ∈ F) in Σ , we insert the following axioms:

(1) ValidG⇒F ≡ ¬RelG � RelF
(2) ValidG∧F ≡ RelG � RelF

Given the final knowledge base, we get the verifica-
tion result en passant. We classify the verification concepts
ValidG⇒F and ValidG∧F of the knowledge baseΣ , leading
to the following observations:

1. A verification concept ValidG⇒F indicates a potential
inconsistency or no inconsistency. If ValidG⇒F is clas-
sified equal to the universal concept �, we can guarantee
that the fulfillment of intentional relations IR ofG ensure
the fulfillment of feature relations FR of F .

2. Otherwise, ValidG⇒F �≡ � holds, and we know that
there is at least a potential inconsistency, but which kind
of inconsistency is unknown. We identify a strong incon-
sistency if the other verification concepts ValidG∧F is
classified equal to the empty concept ⊥; otherwise, it is
a potential inconsistency.

As described in Sect. 3, if there is a mapping between
a goals G and a feature F , the fulfillment of G determines
whether F will be removed or not.

6.2 Correctness of the verification

For a family requirements model Π = 〈 FGM, FM, Φ〉,
the verification recognizes inconsistencies between goal G
and feature F , based on their relations IR and FR.

6.2.1 Relationship coverage in the knowledge base

Relationships of both models are represented in a common
DL knowledge base Σ . Intentional relations IR of a goal
G are represented by a single concept RelG . Likewise, fea-
ture relations FR of a feature F are covered by a concept
RelF . Mappings between goals and features are represented
by equivalence axioms in the knowledge base. For eachmap-
ping, the corresponding concepts RelG and RelF are com-
pared in order to determine the influence of intentional rela-
tions IR on feature relations FR.

Based on this representation, we compare whether RelG
is subsumed by RelF or the intersection of them is a satis-
fiable concept. With respect to Table 1, the correspondences
between intentional and feature relations are reduced to sub-
sumption checking and satisfiability in DL.
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6.2.2 Verification principles

As a last step, we have to show that the detection of strong
and potential inconsistency is correctly achieved in the ver-
ification, i.e., the classification of the verification concepts
ValidG⇒F and ValidG∧F holds if there is an inconsistency
between G and F . Lemma 1 summarizes these statements.

Lemma 1 Let (φ(G,F) with F ∈ F) be a mapping in a
family requirements model Π the following holds: (i) the
concept ValidG⇒F is classified equal to the universal con-
cept �, iff all dependent features of feature F appear in a
feature configuration, whenever feature F, which is mapped
to G, appears; and (ii) the concept ValidG∧F is classified
equal to the empty concept ⊥, iff there is no configuration
possible where F appears when G is fulfilled.

We sketch only the proof for the first statement, but the
proof of the second statement is based on the same argumen-
tation.

Proof ‘⇒’ For a mapping (φ(G,F) with F ∈ F), the con-
cept ValidG⇒F is equal to the universal concept �. We
demonstrate that all dependent features of feature F will
appear in a configuration that contains F . Let F1, . . . , Fn be
the dependent features of feature F . From the classification
of ValidG⇒F , we know that the subsumption RelG 	 RelF
holds, while both concept definitions contain the relation-
ships of goal G and feature F , and the same roles are used
in both concept definitions. The subsumption RelG 	 RelF
can only hold, if each dependent features Fi (i = 1, . . . , n)

of F is mapped to a goal G j (i.e., Fi ≡ G j ), and the goal
is a dependent goal of G, i.e., G cannot be fulfilled if G j is
not fulfilled. Therefore, Fi will be in each configuration that
contains F .
‘⇐’ We demonstrate the other direction by contradiction.
Assume Fi is a dependent feature of F that has to appear
in each configuration if F appears, but ValidG⇒F is not
equal to the universal concept �. Either (1) the structures
in the concept definitions of RelG and RelF are different,
i.e., different types of relationships, or (2) feature Fi is not
mapped to goal G j , where G j is a dependent goal of G
that appears in RelG , and Fi is a dependent feature of F
that appears in RelF . In both cases, we cannot guarantee
that Fi occurs in a configuration if F occurs, because no
dependent goal of G guarantees the selection of Fi . This is
a contradiction to our assumption. ��

6.3 Verification exemplified

We show how DL reasoning detects a potential and strong
inconsistency between family goal intentional relations and
variability and commonality relations in feature models,
based on the examples in Fig. 2.

Feature Item Preparation(IP) has two mandatory child
features Buy Item (BI) and Transfer From Warehouse
(TFW) (Axiom 6). Feature IP is mapped to goal Item Avail-
able(IA), and BI and TFW are mapped to goals Acquire
From Supplier (AFS) and Obtain From Stock (OFS),
respectively. Goals AFS, OFS and BPI are subgoals within
an OR-VP decomposition of goal IA (Axiom 7). Mappings
make the concepts BI and AFS, as well as TFW and OFS
equivalent. (BPI does not contribute to the inconsistency.)

RelI P ≡ ∃requires.BI � ∃requires.T FW (6)

RelI A ≡ ∃requires.AFS � ∃requires.OFS

�∃requires.BP I (7)

In this case, the verification concept ValidI A⇒ I P is not
equal to the universal concept �, since even if the mapped
concepts are equal, RelI A is not subsumed by RelI P .

Strong inconsistencies between relations in family goal
models and feature model are recognized if the verification
concept ValidG∧F is equal to the empty concept ⊥. Con-
sider the strong inconsistency from Fig. 2. Feature Order
Preparation(OP) is mapped to the goal Order Verified
and Approved(OVA). Mandatory child features Approve
Order(AO), Item Preparation(IP) and Order Confirma-
tion(OC) are mapped to goals Approve Order(AO), Item
Available(IA) and Check Correctness of Order(CCO),
respectively. These three goals are in an XOR-VP decom-
position, i.e., the exclude each other, while the correspond-
ing features can only appear together. The feature relations
are described by Axiom 8 as a concept intersection in DL,
while the intentional relations are represented as a concept
union that excludes the appearance of more than one goal
(Axiom 9).

RelOP ≡ ∃requires.AO � ∃requires.IP
� ∃requires.OC (8)

RelOV A ≡ ∃requires.AO ⊗ ∃requires.IA
⊗ ∃requires.CCO (9)

As the XOR-expression (⊗) contains the expression
¬(∃requires.AO �∃requires.I A�∃requires.CCO), the
intersection of RelOP and RelOV A, which is the verification
concept ValidOV A∧OP , is equal to the unsatisfiable concept
⊥, indicating a strong inconsistency.

7 Evaluation

In this section, we highlight two examples of inconsistencies,
which happen in online shopping case study, and analyze the
performance of the inconsistency detection algorithm.
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7.1 Case study analysis

We investigate some parts of the online shopping case study
available in the SPLOT repository.7 The family goal model
and featuremodelwere developed based on the existingmod-
els of the SPLOT repository. We only concentrate on two
common scenarios where inconsistency can happen in a fam-
ily requirements model. These inconsistencies show where
variability relations in online feature models are not aligned
with intentional relations in the family goal model.

As shown in Fig. 4a, there is a goal Order Confirmation and

Bill Sent, which is AND-decomposed intoSent Bill and Sent
Confirmation. Features corresponding to these tasks and
their variability relation alongwithmapping relations are also
shown in the figure. These mapped models have some poten-
tial inconsistencies. These inconsistencies are caused by the
allowable selections of features that lead to the unsatisfaction
of the Order Confirmed and Bill Sent goal. For example,
Fig. 4b shows two instances of the feature model configura-
tions that do not lead to the satisfaction of Order Confirmed
and Bill Sent. These inconsistencies are since (1) the vari-
ability relations in the feature model are not aligned with
variability relations in the family goal model, and (2) the
mapping relations should be logical OR instead of logical
AND between features that are mapped to tasks in the family
goal model.

Figure 4c shows the revised version of the feature model
andmapping relations that ensure consistency between stake-
holders intentions (i.e., goals), feature model and mapping
relations.

In the second example from this case study, we will
show how our description logics-based reasoning approach
helps detect inconsistencies. Therefore, throughout the dis-
cussion about this example, we will also show description
logic axioms that are used for inconsistency detection. In
particular, this example, shown in Fig. 5, represents goal
Item Shipped (G-IS), which is OR-decomposed toCourier
Deliver(T-CD) and Deliver Item (T-DI) tasks. The VP nota-
tion over theOR-decomposition indicates a product line vari-
ability. After applying Algorithm 1, Axiom 10 is generated.

RelG−I S := RelG−I S � (∃ requires.T

−CD � ∃ requires.T − DI ) (10)

The feature model that corresponds to the Item Shipped
goal is shown in Fig. 5. Feature Shipment (Sh) is OR-
decomposed to the Shipping Gateway (SG) and Store
Delivery (SD) features, where the former is further OR-
decomposed into the FedEX (FE), UPS, Canada Post
(CP), and USPS features. Additionally, the optional fea-
ture Shipping Cost Calculation (SCC) is developed which

7 Software Product Lines Online Tools—http://www.splot-research.
org/.

is required by the Shipping Gateway (SG) feature and
excluded by the Store Delivery (SD) feature. The trans-
formation of the feature model to description logic using
Algorithm 2 is shown by Axioms 11–14.

RelShipment := RelSh � (∃ requires.SG � ∃ requires.SD)

(11)

RelSG := RelSG � (∃ requires.FE � ∃ requires.UPS

�∃ requires.CP � ∃requires.USPS) (12)

RelSG := RelSG � ∃ requires.SCC (13)

RelSD := RelSD � ¬∃ requires.SCC (14)

The mapping model in Fig. 5 shows that the Courier
Deliver task is mapped to the Shipping Gateway and Ship-
ping Cost Calculation features and theDeliver Item task is
mapped to the Store Delivery and Shipping Cost Calcu-
lation features. The transformation of the mapping relations
into description logic generates Axioms 15–18:

ValidT−CD⇒〈SG,SCC〉 ≡ ¬RelT−CD � (RelSG � RelSCC )

(15)

ValidT−CD�〈SG,SCC〉 ≡ RelT−CD � (RelSG � RelSCC )

(16)

ValidT−DI⇒〈SD,SCC〉 ≡ ¬RelT−DI � (RelSD � RelSCC )

(17)

ValidT−DI�〈SD,SCC〉 ≡ RelT−DI � (RelSD � RelSCC )

(18)

After performing reasoning over the generated axioms, the
results show that both ValidT−CD⇒〈SG,SCC〉 and
ValidT−CD�〈SG,SCC〉 equal to universal concept �, which
shows that there is no inconsistency for the mapping
and relations in the family goal model and the feature
model. However, results of the reasoning reveal that
ValidT−DI�〈SD,SCC〉 and ValidT−DI⇒〈SD,SCC〉 are equal
to the bottom concept ⊥ (i.e., ValidT−DI�〈SD,SCC〉 ≡
ValidT−DI⇒〈SD,SCC〉 ≡ ⊥). This shows that there is a
strong inconsistency between task Deliver Item and fea-
tures Store Delivery and Shipping Cost Calculation. The
inconsistency is because theStore Delivery feature excludes
the Shipping Cost Calculation feature, while they both are
mapped (using an AND relation) toDeliver Item. By chang-
ing the mapping (i.e., removing the mapping between Ship-
ping Cost Calculation (SCC) feature and Deliver Item (T-
DI) task), the inconsistency in the family requirement model
can be resolved.

7.2 Performance evaluation

The main objective of our study in this section is to analyze
(1) the performance of the verification algorithm and (2) the
factors of influence on the performance.
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Fig. 4 A part of goal model and its corresponding feature models.
a Order Confirmed and Bill Sent Goal and corresponding features
and mapping relations. b Sample Configurations of the feature models

which lead to unsatisfaction of Order Confirmed and Bill Sent Goal.
c Consistent feature model and mapping relations

7.2.1 Scope of the evaluation

In order to analyze the performance of the verification
algorithms and the factors of influence on this verification
approach, we summarize our investigations by the following
four research questions:

– RQ1: How does the execution time of the inconsis-
tency detection algorithms scale-up as the size of family
requirements model increases?

– RQ2: Does the increase or decrease in product line vari-
ability in the family goalmodel have significant impact on
the running time of inconsistency detection algorithms?
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Fig. 5 Item Shipped goal and
its corresponding feature model

– RQ3:Does the percentage of the inconsistency types have
major impact on the running time of algorithms?

– RQ4: Does the different distributions of intentional rela-
tions in the family goal model have significant impact on
the running time of inconsistency detection algorithms?

Besides this, the study also serves as an empirical confir-
mation of the correctness of our verification approach.

7.2.2 Experimental setting

In order to investigate the above research questions, we
applied the simulation modeling technique by following
guidelines similar to those proposed in [33]. We selected
the simulation technique as it is commonly employed in the
context of software product line verification and configura-
tion [3,34,35].

Hence, we developed a generator, by utilizing the FAMA
framework, to randomly developed family goal models, fea-
ture models and mapping based on the given parameters. By
setting the parameters, the generator produces the random
models, which satisfy the requested characteristics.

To control the number and kinds of inconsistencies in
the family requirements models, we first randomly produced
family goal models and then generated feature models from
goal models by transforming product line variability in the
goal models into variability relations in feature models and
behavioral variability into mandatory relations. This way, we

can generate random inconsistencies in the family require-
ments model, by considering inconsistency patterns illus-
trated in Table 1 and check whether the proposed algorithms
can find these inconsistencies.

The initial featuremodels, which are derived from the goal
models, are expanded with additional features. We based the
expansion strategy for feature models on the FORMmethod
case study [26] as between one and five implementation fea-
tures were added to featuremodel for each capability feature.
Thus, we add between 0 and 5 features to each atomic fea-
ture in the feature models to reflect the technical features
that are added to realize the conceptual feature. The number
of potential and strong inconsistencies varies in the family
requirements model.

We investigated questions RQ1–RQ4 in two different set-
tings. In the first setting, the distribution of intentional rela-
tions is fixed and the other potential factors of influence
to answer questions RQ1–RQ3 vary. In the second setting,
we analyze the influence of different distributions (question
RQ4). Furthermore, in both settings, we check whether the
algorithms work correctly.

Experimental setting 1 In this setting, the distribution of
intentional relations in the family goal model is fixed. The
setting compares different sizes of goal models (RQ1), dif-
ferent distributions of product line variability (RQ2) and dif-
ferent number of inconsistencies (RQ3). The distributions of
intentional relations are considered as follows: 50% AND-
decomposition, 25% OR-decomposition and 25% XOR-
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Table 3 Specification of eight models in the first experiment with 100
goals and tasks

Model size PV (%) Pot. Inc. (%) Str. Inc. (%)

100 25 25 25

100 25 25 50

100 25 50 25

100 25 50 50

100 50 25 50

100 50 50 25

100 50 50 50

The other sixteen models have similar specification except number of
goals and tasks

decomposition. For AND-decompositions, 50% are consid-
ered optional and the other 50% are mandatory intentional
elements. This distribution is selected in order to avoid any
influence of different distributions of intentional relations on
the running time for this experiment. We investigate such
different distributions of intentional relations in the experi-
mental setting 2. There are contribution links from 20% of
the goals and tasks (as source intentional elements) to the
soft goals (as destination intentional elements).

With the fixed distribution of intentional relations,we gen-
erated goalmodels with 100, 200 and 300 goals and tasks and
10 soft goals. The number of goals and tasks was selected
based on investigations of the size of practical goal mod-
els in the literature [36,37]. From existing intentional rela-
tions in the generated goal models, either 25 or 50% of the
relations are set as product line variability by annotating
them with VP. For changing the behavioral variability and
product line variability percentages, we do not change the
structure of family goal model. We should note that in our
approach, generated OR and XOR relations in family goal
model are fixed (5% OR-decomposition, and 25% XOR-
decomposition). The change in the product line variability
is only done by annotating the generated family goal mod-
els; hence, we prevent any change in the structure of family
goal models. With respect to inconsistencies, we considered
25 and 50% of the total number of possible inconsistencies.
Hence, we generated 24 family requirements models cover-
ing thewide range of goalmodels sizes, product line variabil-
ity and inconsistency distributions. Table 3 illustrates eight
generated models with 100 number of goals and tasks. The
other 16 models have similar characteristics except different
number of goals and tasks (i.e., 200 and 300). We use 10 dif-
ferentmodels for each kind of generated family requirements
model to reduce the impact of the randomness of generated
models on the running time.

Experimental setting 2 This setting concentrates on question
RQ4,which aims at investigating the effect of the distribution

Table 4 Specification of models in the second experiment

AND (%) OR (%) XOR (%) Avg. Time (ms)

25 37 38 5,510

50 25 25 5,680

75 13 12 5,120

37 25 38 5,710

25 50 25 5,130

12 75 13 4,950

37 38 25 5,620

25 25 50 5,840

13 12 75 5,970

After deciding on one of the intentional relation distributions, the other
relations have the equal distributions in the models

of intentional relations on the running time of the inconsis-
tency detection. During the experiments, we generated goal
models with 300 goals and tasks, 10 soft goals. We consider
50% distribution of product line variability in all the mod-
els. For every intentional relation AND, OR and XOR, three
distributions 25, 50 and 75% are devised leading to nine dif-
ferent kinds of models, as outlined in the columns 1–3 in
Table 4. This enables us to cover wide ranges of structural
variability in family goal models. The average number of
inconsistencies in all models was 50% of the total number
of possible potential and strong inconsistencies.

System information and implementation details The knowl-
edge base creation is implemented with OWL-API. For rea-
soning, we used the Pellet reasoner (Pellet reasoner site:
http://clarkparsia.com/pellet/).Our test system is aNotebook
with an Intel Core 2 Duo T7300 CPU (2.0GHz, 800MHZ
FSB, 4MB L2 cache and 2GB DDR2 RAM). We used
256MB RAM for the Java VM of the Eclipse environment.

Given generated family requirements model, our tool cre-
ates an knowledge base as described in Sect. 5. The DL
expressivity is ALC. After reasoning on the family require-
ments model, the tool produces a list of potential and strong
inconsistent mappings.

7.2.3 Experimental results and analysis

The results of the analyses of performance and influence
factors are illustrated in Figs. 6 and 7. The percentage of
potential inconsistencies (third column in Table 3) and strong
inconsistencies (fourth column in Table 3) refer to the corre-
sponding percentage of the total number of possible potential
and strong inconsistencies that can occur in each individual
model of each type. Because the models are randomly gen-
erated, the number of possible inconsistencies (potential and
strong inconsistencies) is different in each model.
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Fig. 6 The average running
time for models in the first
experiment: the Y axis shows the
running time and the X axis
shows different distribution of
product line variability, potential
inconsistencies and strong
inconsistencies

Fig. 7 The average running
time for models in the second
experiment: The Y axis shows
the running time, and the X axis
shows different distribution of
intentional relations

According to the results shown in Figs. 6 and 7, we reflect
and discuss each of our question.

– RQ1: As answer to this research question, we investigate
the main effect of the model size on the running time, and
the results indicate that the mean value of the execution
time was significantly higher in the goal model with 200
elements (M = 2,372.91,SD = 524.38) than in the goal
model with 100 elements (M = 796.66,SD = 51.69)
and also the mean value of the execution time was sig-
nificantly higher in the goal model with 300 elements
(M = 4,608.65,SD = 1,209.49) than in the goal model
with 200 elements (M = 2,372.91,SD = 524.38).
According to the result, we can conclude that the size of
models has impact on the running time. However, we can
observe the execution time of our algorithm for the largest
experimented model in less than 6s on a computer with

rather modest hardware capabilities. As we mentioned in
experimental setting, a common size of goal models is
less than 300 goals and tasks.

– RQ2: Based of our analysis, the main effect of prod-
uct line variability indicates that the mean value of
the execution time was not significantly greater for the
50% product line variability (M = 2,597.02,SD =
1,734.38) than for the 25%product line variability (M =
2,588.42,SD = 1,755.15). Therefore, different distrib-
utions of product line and software variabilities do not
impact the running time of the verification algorithm. As
we mentioned in Sect. 7.2.2, in the generated models,
the software and product line variability distributions are
computed based on the total number of generated XOR
and OR relations. For example, the 75% product line
variability is computed by randomly annotating 75% of
OR and XOR relations with VP. Interestingly, the results
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show that having different distributions of product line
variability in the family goal models does not affect the
running time, significantly.

– RQ3: The increase in the inconsistencies increases the
execution time of the algorithm. This can be observed
for each model size. The results show that the mean
value of the execution time was significantly higher in
the 50% strong inconsistency (M = 2,683.07,SD =
1,750.81) than in the 25% strong inconsistency (M =
2,502.42,SD = 1,734.03). Also, the mean value
of the execution time was significantly higher in the
50% potential inconsistency (M = 3,164.91,SD =
2,046.67) than in the 25% potential inconsistency (M =
2,020.58,SD = 1,113.35). According to the results, the
influence of the number of potential inconsistencies is
larger than the influence of the strong inconsistencies.
This result can be attributed to the two main reasons:
First, as we expected, each strong inconsistency is also a
potential inconsistency, and the representation of poten-
tial inconsistency is a more complex concept expression
due to the negation in the verification concept. Second,
according to Table 1, the total number of possible poten-
tial inconsistencies is larger than the total number of pos-
sible strong inconsistencies; consequently, 25 and 50%
potential inconsistencies are higher than 25 and 50%
strong inconsistencies.

– RQ4: According to the results for this research ques-
tion, distribution change in intentional relations has dif-
ferent impact over running time, while the higher num-
ber of OR relations decreases running time, the higher
number of XOR relations increases the running time.
Interestingly, if the half of the relations are AND rela-
tions, the running time is the higher. Also, OR relations
require less verification time, while XOR relations are
the most expensive one. This result is expected based
on the logical representation in our knowledge base, as
XOR descriptions are quite complex concept expressions
using negation.However, our purpose is to checkwhether
our approach can cope with different kinds of distribu-
tions, and this seems to be confirmed by the experimental
evaluation.

As already stated, the aim of this evaluationwas to demon-
strate that the modeling and reasoning approach is tractable
in practical software product lines. The size of 300 goals
is a realistic size of the family requirements model to cap-
ture real software product lines. The evaluation shows that
even if up to 50% of all possible inconsistencies occur, the
execution time is feasible (6 s) for the largest experimented
model.

Finally, the evaluation confirmed the that the verification
algorithms are correct as all inconsistencies are recognized
by the reasoner in the DL knowledge base.

7.2.4 Threats to validity

Threats to internal validity refer to the confounding variables
that might have impact on the running time of the verification
algorithm andwere neglected during the experiment.We pre-
vented these kinds of threats by designing two different sets
of experiments and by controlling confounding variables. For
example, in the first experiment setup, we considered a fixed
distribution of intentional relations and focused on the impact
of other independent variables (i.e., size of model, product
line variability, and number of potential and strong inconsis-
tencies).

External validity investigates whether the results of the
experiments are generalized. With respect to the size of fam-
ily requirements models, our investigation over existing pub-
lications in SPL and requirements engineering communities
confirmed that the sizes of generatedmodels are aligned with
the size of existing models in the literature.

In order to trace the percentages of inconsistency injected
in family requirements model, we generated feature models
from family goal models and added inconsistencies based on
Table 1. This method leads to structural similarity between
family goal models and feature models. Hence, one may
concern that the samples are not proper representatives of
existing models in the real world. Family goal model shows
the intentions of the stakeholders and their refinements into
subgoals and tasks. On other hand, feature models show
hierarchical representations the features of a product line
which implements the tasks in family goal model. There-
fore, there are similarities between features model struc-
ture and family goal model structure. Additionally, many
researchers in software product line requirements engi-
neering domain [8,9,38,39] proposed techniques to trans-
fer goal models into feature models, which supports our
claim for similarity between family goal models and feature
models.

With respect to distribution of intentional relations and
variability relations, we reduced this threat by covering wide
variety of distributions including 25, 50 and 75%. Addi-
tionally, we automatically generated 100 samples for each
combination to include the structure diversity in generated
models.

Another threat to external validity of our approach is
that the execution time is influenced by the proposed mod-
eling and formalization approach of family requirements
model. Hence, for various representation, wemay have slight
different execution times for each distribution of indepen-
dent variables. Thus, our results cannot be generalized to
other approaches such as SAT solvers, which could be used
as alternative for implementation of the proposed verifica-
tion approach. However, the experimental results show that
employing description logic can cope with different kinds of
distributions.
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8 Related work

In this section, we discuss the related works and compare
them with our work using a set of criteria found in the liter-
ature.

8.1 Goal modeling techniques in software product line
engineering

Goal models, seen as a complementing technique for other
requirements engineering approaches, are started to be
applied in the context of SPLE. Yu et al. [7,8] developed an
approach to (1) generating design models from goal models
and (2) using the goal models for configuration of the gen-
erated design models. The authors of [7] introduce a set of
annotations for generating feature models from goal models,
which they extend in [8] to design models such as statecharts
and components.

Similarly, Lapouchian et al. [9] introduce an approach
to automatically generating business process models and
their configuration with extended goal models. They intro-
duce variation points for specifying design time and run-time
variabilities. In order to generate business processes auto-
matically from goal models, they propose ordering annota-
tions between goals and tasks that are involved in a AND-
decomposition relations.

Silva et al. [38] employ aspectual i* to support variability
in software product lines. Mandatory features are considered
internal elements of i*, while optional, alternative and OR
features are treated as aspectual elements in their approach.
Composition rules are defined for all variabilities in the mod-
els. Introducing aspects in i* models and describing com-
position rules for all variabilities increased the complexity
of models, which leads to scalability problems. Finally, this
work is based on the assumption that each optional and alter-
native feature is mapped into one aspect.

Goal and feature model relations are further investigated
by Antonio et al. [20]. They propose an approach to deriving
feature models from i* goal models. A feature is defined as
a relevant characteristics of the system, while a system char-
acteristic allows for achieving a certain goal. They integrated
cardinalities into i* models to represent (optional and alter-
native cases) variability in themodels. Furthermore, ameans-
end relationmay be transferred intoOR relation or alternative
relation according to the cardinality of means involved in the
relation. In addition to the extension on i*models, they intro-
duced a set of heuristics to produce a feature model from i*
models.

Borba and Silva [39] extend the i* language to repre-
sent variability and commonality. They introduce manda-
tory means-end, optional means-end, cardinality means-
end, alternative means-end and means-end group cardinal-
ity. They also provide a set of heuristic rules along with

high-level processes for transforming feature models to goal
models. This approach performs product configuration using
the notion of soft goals and contribution links between tasks
and soft goals.

Santos et al. [40] introduce an aspect-oriented require-
ments modeling language called PL-AOVGraph to repre-
sent variability in software product lines. The language is an
extention of AOV-graph goal models that include cardinali-
tyMin, cardinalityMax, groupFeature, cardinalityGroupMin,
cardinalityGroupMax and isFeature to support variability. In
their approach, they provide a bidirectional transformation
between feature models and PL-AOVGraphs, which produce
one of the models when the other model is available.

Mussbacher et al. [41] apply the AoURN framework in
the software product line domain. They use GRL for model-
ing stakeholders’ objectives and propose a URN profile for
defining feature models. In their approach, they create goal
models and feature models independently. Next, for atomic
features in a feature model, their behavior and structure are
generated. Afterward, features are mapped into goals, and
their impacts are identified over the goals using contribution
links.

Liaskos et al. [21] exploit the intuitiveness of goal models
for configuration of customizable software. In their approach
alternative system, configurations are matched with alterna-
tive ways of satisfying high-level goals. Hence, by perform-
ing reasoning over a goal model, they can customize a soft-
ware system.

Jureta et al. [42] proposed an abstract requirements mod-
eling language called Techne, which introduces optional,
mandatory and preference notions into the standard goal
modeling languages. Techne describes inference, conflict,
preference, is-mandatory and is-optional relations and mod-
els the requirements and their relations in terms of graphs
called r-net. In order to identify the preferred solutions, r-nets
are encoded into propositional formula and logical reasoning
is employed.

Ernst et al. [43] extended the Techne language with some
operations to perform paraconsistent reasoning over models
represented in Techne models. The approach, called KOM-
BINE, describes a set of consistency criteria over require-
ments problems to find a solution in presence of conflict. It
applies the PARACONSIST-MIN-GOAL-ACHIEVEMENT
andPARACONSIST-GET-CANDIATAE-SOLUTIONoper-
ations, which identify the mandatory requirements and non-
mandatory requirements, respectively.

Finally, Ali et al. [44] enriched Tropos goal models with
contextual information and proposed contextual goal mod-
els. They defined contextual information in terms of propo-
sitional formula and considered alternative behaviors of the
system to be variants derived based on contextual informa-
tion. Their technique identifies inconsistencies of the con-
texts specified as preconditions for an alternative behavior
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Table 5 Comparisons of goal-oriented software product line approaches (+ means criterion is met with the approach and − means criterion is not
met with the approach)

Approaches Criteria

Goal
model

Feature
model

B/P
variability

Conflict
identification

Impact
analysis

Stakeholders’v
trade-off

Configuration G/F
validation

Yu et al. [7] + + − + − + + −
Lapouchian et al. [9] + + + + − + + −
Silva et al. [38] + + − + − − + −
Antonio et al. [20] + + − + − − + −
Borba and Silva [39] + + − + − − + −
Santos et al. [40] + + − + − + + −
Mussbacher et al. [41] + + − + + + + −
Liaskos et al. [21] + − − + − + + −
Techne [42] + − + + − + + +

KOMBINE [43] + − − + − + + +

Contextual Goal Models [44] + − − + − + + +

Our approach + + + + + + + +

and inconsistencies in the changes on the context caused
by execution of tasks [45]. They applied SAT techniques to
discover inconsistencies.

8.2 Criteria based comparison with related works

In order to compare the goal-oriented approaches in product
lines, we developed a set of criteria by adapting the criteria
proposed in Mussbacher et al. [41] and Varela et al. [46].
Feature model and goal model criteria investigate whether
the approach provides these two models. The behavioral
and Product line variability criterion refers to discrimina-
tion of software and product line variability in goal models.
The Impact analysis, Conflict Identification and Stakehold-
ers trade-offs criteria explore if the impacts of features over
intentions of stakeholders are addressed, if the conflict in
the soft goals are identified and if reasoning over stakehold-
ers’ needs is preformed, respectively. Finally, the Configura-
tion and Goal Model and Feature Model Validation criteria
investigate whether the approach configures a feature model
according to the requirements of stakeholders and checks
consistencies of variability relations between goal models
and feature models.

Table 5 illustrates differences between our approach and
the existing goal modeling approaches in the context of soft-
ware product lines.

Our approachmainly differs fromother approaches in pro-
viding a comprehensive validation approach that takes poten-
tial changes in feature models, which can appear during the
design of SPLs and validates whether variability relations
in the feature model are aligned with the intentional rela-
tions in the family goal model. Additionally, we discriminate

between product line variability and behavioral variability in
goal models, which is neglected in most of the works except
in [9,42]. However, it is crucial to consider the difference
between these two types of variability when using goal mod-
els in the software product line domain. For conflict analysis,
we rely on the GRL techniques, and through mapping, we
can identify the impact of the features over tasks, and conse-
quently, by using propagation algorithms in the GRL, we can
see the impacts of the features on the higher-level objectives.

Other relatedwork consider the detection of inconsistency
in feature configurations, but without goal models. Czar-
necki et al. [47] introduce an approach based on SAT solvers
that detects violations of OCL-based well-formedness con-
straints of design models in feature configurations. Thaker et
al. [48] extend even further this research direction and detect
the absence of references in feature models to undefined
classes, methods and variables. Janota et al. [49] and van der
Storm [50] use propositional logic to validate the correctness
of mappings between feature and component models. All of
these approaches are used to detect inconsistencies between
design models and feature models where inconsistencies are
the result of the change in one model. In this work, we go a
step further and validate inconsistencies between feature and
goal models.

9 Conclusions and future work

As demonstrated in the paper, our contribution advances the
state-of-the art in GORE for SPLs with a formal and cor-
rect validation approach for family requirementsmodels. The
proposed validation assures that intentional variability of an
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SPL, captured in goal models, does not violate constraints
of technical variability captured in feature models. The pro-
posed validation approach compares the influence of inten-
tional relations given by a goal model with feature relations
from the feature model.

Both goal models and feature models successfully have
been used in software engineering research and practice to
capture stakeholders’ needs and intentions [14,44,51] and
managing product line variability [24,52,53]. Their combi-
nations advance requirements engineering and configuration
in the software product line context. Applying goals in soft-
ware product line not only facilitates identifying features in
domain engineering life cycle, but also ease the selections of
features based on stakeholders’ intentions and needs in appli-
cation engineering life cycle. Several relatedworks as well as
our framework and tooling support demonstrate the practical
applicability of the goal-oriented requirements engineering
in the context of software product line engineering. There-
fore, we believe that the results of our work will be useful
for the development of professional tools.

In our future work, we will also describe the validation
procedure for the further steps of product line configuration.
First, we can validate if existing relations in the reference
architecture models, in our research reference process mod-
els, are aligned with the relation defined in the family goal
models. Second, we are going to develop an approach to
ensure validity of customized process models with respect
to relations in reference process models and feature mod-
els. Finally, we aim at extending the validation technique to
cover other properties such as safe composition (i.e., for all
application goal models, we have at least one feature model
configuration and vice versa).
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